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Real-Time Neural 
Rendering  
In Image Space
Anton Kaplanyan, Facebook Reality Labs



Why Neural Rendering at Facebook?



Facebook Reality Labs

Former Oculus Research, located in Redmond, WA 

Work on consumer VR/AR/MR 

Graphics team: next generation graphics for VR/AR 

• real-time ray casting 

• machine learning 

• perceptual rendering 

• metaverse ecosystem 

...next generation rendering for head-mounted displays
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Why Neural Rendering?

• Rendering as signal processing 
• Prefiltering 
• Sampling 
• Postfiltering 

• Local approximations 
• New material models 
• Sampling and variance reduction 
• Texture compression 

• Content creation 
• Texture synthesis
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Fovea
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Why Neural Rendering?

• Signal processing
• Prefiltering
• Sampling
• Postfiltering

• Perceptual imagery
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Why Neural Rendering?

• Signal processing
• Prefiltering
• Sampling
• Postfiltering

• Perceptual imagery
• Foveation and peripheral degradation
• Saliency and attention
• Local image consistency
• Temporal consistency
• High-level scene understanding
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Some Prior Art

• Prefiltering  
• Global illumination with radiance regression functions [Ren13] 

• Sampling  
• End-to-end Sampling Patterns [Leimkuehler18] 

• Postfiltering  
• A machine learning approach for filtering Monte Carlo noise [Kalantari15] 
• Kernel-Predicting Convolutional Networks for Denoising Monte Carlo 

Renderings [Bako17] 
• Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent 

Denoising Autoencoder [Chaitanya17] 
• Neural scene representation and rendering 
• Full CV and CG pipeline [DeepMind18]
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Interactive Reconstruction of Monte Carlo Image 
Sequences Using a Recurrent Denoising Autoencoder
work done at Nvidia with Chakravarty R. Alla Chaitanya, Christoph Schied,  
Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, Timo Aila 



Global Illumination in Movies and Games
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• Used in games 
• Precomputed lighting 
• Coarse real-time approximations 

• Movies 
• Monte Carlo noisy images 
• Denoising is essential



Real-Time Reconstruction
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Real-Time Reconstruction

• Limited to a few rays per pixel @1080p @30Hz 
• Never enough to render an image!
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Real-Time Reconstruction
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Neural reconstruction• Limited to a few rays per pixel @1080p @30Hz 
• Never enough to render an image! 

• Deep learning approach for interactive graphics 
• Handle generic effects 
– Soft shadows 
– Diffuse and specular reflections 
– Global illumination (1 bounce)



Problem Setup: Real-Time Path Tracing
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Problem Setup: Real-Time Path Tracing

!14

Rasterize primary hits into a G-Buffer

Path tracing from the primary hits
1 ray for direct shadows
2 rays for indirect (sample + connect)

1 direct + 1 indirect path := 1spp



Related Work: Offline
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Related Work: Offline

• Sheared filters [Egan11b]
• Light field reconstruction [Lehtinen11, Lehtinen12]
• Stein’s unbiased risk estimate based filter [Li12]
• Denoising using feature and color [Rousselle13]
• Local regression models [Bitterli16, Moon15, Moon16]
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Related Work: Interactive
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Related Work: Interactive
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• Frequency-space analysis of light transport [Mehta12, 
Mehta13, Mehta14, Yan15]



Related Work: Interactive
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• Frequency-space analysis of light transport [Mehta12, 
Mehta13, Mehta14, Yan15]

• Edge-avoiding wavelet filter [Dammertz10]
• Guided image filters [Bauszat15]
• Texture space [Munkberg16]



Related Work: Machine Learning
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Related Work: Machine Learning

• Image inpainting [Pathak16]
• Single-image super resolution [Ledig16]
• Image classification [Krizhevsky12]
• Image restoration [Mao16]
• Learning based filter for Monte Carlo denoising [Kalantari15]
• Disney offline denoiser [Bako17, Vogels18]
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Input Features

• Additional features from primary visibility (G-Buffer)
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Untextured 
illumination

View-space normals Linear depth  
and roughness



U-Net Design
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Encoder

U-Net Design

• Encoder and decoder stages of a U-Net for hierarchical representation
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U-Net Design
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Training sequences
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Training sequences

Sponza Diffuse Sponza Glossy Classroom
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1spp 
(~70ms)
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U-Net (1spp) 
(~70ms + ~60ms)
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Reference (1024spp) 
(~240s)
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Image-to-image results
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Image-to-image results



Temporal Stability



Recurrent U-Net
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Recurrent U-Net

• Recurrent connections retain important features at different scales over time
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RCNN



Recurrent Block
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Recurrent Block

• Fully convolutional blocks to support arbitrary image 
resolution
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• Fully convolutional blocks to support arbitrary image 
resolution

• 6 RNN blocks, one per pool layer in the encoder

• Design 
– 1 conv layer (3x3) for current features 

– 2 conv layers (3x3) for previous features
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Recurrent Block

• Fully convolutional blocks to support arbitrary image 
resolution

• 6 RNN blocks, one per pool layer in the encoder

• Design 
– 1 conv layer (3x3) for current features 

– 2 conv layers (3x3) for previous features
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Temporal Training
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Temporal Training

• Sequence of 7 frames

• Increase loss with number of frames

• Augmentation: Play the sequence forward/backward

• Augmentation: Each frame can either advance or freeze the camera
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Loss Function

Spatial loss for more emphasis on dark regions 

High Frequency Error Norm loss for stable edges 
[Ravishankar11]
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Recurrent U-Net 
with TAA

Recurrent U-Net U-Net 
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Recurrent U-Net 
with TAA

Recurrent U-Net U-Net 
(image-to-image)
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Reconstruction 
Results



San Miguel Results
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San Miguel Comparison Results
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MC Input ReferenceAAF EAW SBF

RMSE: 0.079 RMSE: 0.088 RMSE: 0.087

Our

RMSE: 0.055
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Red Room Results
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Red Room Comparison Results
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ReferenceOur

RMSE: 0.029

EAW SBF

RMSE: 0.041 RMSE: 0.052

MC Input
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GENERALIZATION: 
OFFLINE 256SPP INPUT



Horse Room, 256spp
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Horse Room ComparisonS
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ReferenceMC Input EAW SBF NFOR

RMSE: 0.094 RMSE: 0.040 RMSE: 0.018

Our

RMSE: 0.034
10.3ms 74.2ms 110s 54.9ms
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GENERALIZATION: 
SPECULAR MATERIALS
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Recurrent U-Net 1 sample/pixel input
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Recurrent U-Net 1 sample/pixel input



Performance

• Optimized CUDA and cuDNN inference 
• Kudos to Jon Hasselgren and Jacob Munkberg 

• 54.9ms on NVIDIA Titan X (Pascal) on a 720p image 
• Volta is 3x faster, Turing is 3x3=9x faster?
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Conclusion

• Deep learning application to 1spp reconstruction
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Conclusion

• Deep learning application to 1spp reconstruction
– Recurrent U-Net for temporal stability
– Interactive performance 

– Follow up work
– Deep Adaptive Sampling for Low Sample Count Rendering [Kuznetsov18]

– OptiX 5 denoiser is based on this work
– 19ms performance on Titan V (1080p)
– Wide adaption in interactive rendering
– Limited to image-to-image, firefly filter required
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DeepFocus
with Lei Xiao, Alex Fix, Matt Chapman, Doug Lanman 
 at Facebook Reality Labs



Gaze-Contingent Varifocal Display

Display Image

Retinal Image
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Gaze-Contingent Varifocal Display

Display Image

Retinal Image
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Multifocal Display

Display 1 Display 2

Display 3 Display 4

Retinal Image
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Multifocal Display

Display 1 Display 2

Display 3 Display 4

Retinal Image
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Near-Eye Light Field Display

Display Image

Retinal Image
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Near-Eye Light Field Display

Display Image

Retinal Image
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Gaze-Contingent Var i focal  Display Mult i focal  Display Near-Eye Light Fie ld Display

Challenge: Real-Time Physically-Accurate Rendering and Optimization 

Accommodation-Supporting Displays
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Defocus Blur Multilayer Decompositions Multiview Imagery
Varifocal HMDs Multifocal HMDs Light Field HMDs

OUTPUT



RGB Depth

INPUT

Defocus Blur Multilayer Decompositions Multiview Imagery
Varifocal HMDs Multifocal HMDs Light Field HMDs

OUTPUT
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Volume-Preserving Interleaving Layer
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Output

Volume-Preserving Interleaving Volume-Preserving De-Interleaving

DeepFocus Network



Random 3D scenes RGB-D

Training Dataset: Path-Traced Random 3D Scenes



Random 3D scenes RGB-D

Training Dataset: Path-Traced Random 3D Scenes



Application #1: Varifocal HMDs
Inferring Gaze-Contingent Defocus Blur from RGB-D



INPUT

Gaze-Contingent Defocus Blur

OUTPUT

RGB, Depth, CoC Map

INPUT

DeepFocus: Gaze-Contingent Defocus Blur from RGB-D
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9.8ms, 1024x1024



DeepFocusInput RGB Ground truth

focal 
distance



DeepFocusInput RGB Ground truth

focal 
distance



Unity Nuke Nalbach et al. 2017 DeepFocus Ground truth
 6325.3dB 40.1dB 37.0dB 45.6dB



Unity Nuke DeepFocus Ground truth

0.6 1.0
SSIM
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Nalbach et al. 2017
0.887 0.993 0.989 0.999







Application #2: Multifocal HMDs
Inferring Focal Stack and Multilayer Decomposition



0.2D

0.8D

1.4D
2.0D

display 

display

display
display

Multifocal Displays

focal plane

Retinal Image Display Image

Kernel
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Multifocal Displays

3D scene Render Dense Focal Stacks Solve Iterative Optimization Optimized Multilayers

[Narain et al .  2015, Mercier et al .  2017] 
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Multifocal Displays

3D scene Render Dense Focal Stacks Solve Iterative Optimization Optimized Multilayers

[Narain et al .  2015, Mercier et al .  2017] 

COMPUTATIONALLY EXPENSIVE
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INPUT

RGB and Depth

INPUT

Multilayer Decomposition

OUTPUT

10.0ms, 1024x1024
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focal distance (D)
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Akeley et al.
Mercier et al.
Narain et al.
DeepFocus

DeepFocus: Multilayer Decomposition from Dense Focal Stacks

PSNR (dB)

0.01

7.5

13.3 Narain et al.
Mercier et al.
DeepFocus

Runtime (sec)
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Application #3: Light Field HMDs
Inferring Multiple Viewpoints



DeepFocus: Multifocal Decomposition from RGB-DNear-Eye Light Field Displays
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DeepFocus: Multifocal Decomposition from RGB-DNear-Eye Light Field Displays
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Sparse RGB and Depth

INPUT

Multiview Imagery

OUTPUT

19.7ms, 81x512x512







Limitations and Conclusion



DeepFocus: Dense Light Field from Sparse-View RGB-Ds

Input RGB Input Depth

RGB-D Limitations
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DeepFocus (near focus) Ground Truth (near focus)
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RGB-D Limitations



Conclusion

RGB Depth

Defocus Blur Multilayer Decompositions Multiview Imagery
Varifocal HMDs Multifocal HMDs Light Field HMDs

DeepFocus
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9.8ms, 1024x1024 10.0ms, 1024x1024 19.7ms, 81x512x512



Outlook



Machine Learning: Challenges

• Easy to get to 80%, very hard to get to 95% 

• Not a silver bullet! 
• Inversion is hard 
• Validation/coverage is hard 
• Worst case accuracy? 

• Hyperparameters!  
• Keep your experiments organized 
• Needs more compute
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Machine Learning: Applications

• New framework for rendering 
• Approximation 
• Compression 
• Learning distribution 

• Closest to human perception 

• Differentiable programming as a generic optimization framework for existing methods, e.g. see [Li18]
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Thank You!

Opportunities in Redmond, WA: 

• Research Scientist, Machine Learning and Graphics 

• Research Scientist, Materials and Multiscale Appearance 

• Postdoctoral Research Scientist, Graphics  

• Graphics Compression Lead

• Cloud Streaming Network Engineer 

• PhD 2019 Internships 

Graphics team at Facebook Reality Labs is seeking researchers and engineers for next generation graphics for 
virtual and augmented reality: ray tracing, metaverse ecosystem, perceptual rendering, and machine learning.  

Contact me (anton.kaplanyan@oculus.com) or Nicole Doyle (nicole.doyle@oculus.com) if you are interested.
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Untextured + depth
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Untextured + normal
Untextured + depth
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Untextured + normal + depth
Untextured + normal
Untextured + depth
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Untextured + normal + depth
Untextured + normal
Untextured + depth
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